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Microtubules

Centrosomes are often abnormal

1n cancer cells.
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The centrosome 1s the primary
microtubule nucleation site in most cells
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Depolymerization

The elasticity of the
protofilaments that curve
outward at the disassembling
plus end drives a sliding collar
on the kinetochore toward the
minus end (a power stroke
mechanism).
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Tubulin half life is
nearly a full day

The half life of a given
microtubule may be
only 10 min.

+ A static microtubule grow in the presence of a non-
hydrolysable GTP analogue - a tube has little tensions.

+ A dynamic microtubule grow in the presence of GTP is
a tube ready to crack.

The tubulin concentration 1n cells 1s on the order of 20 uM



tubulin heterodimer
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GTP-tubulin dimer
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Treadmilling

Treadmilling does not involve
actual movement of the
microtubule lattice.




Dynamic instability: significance
Allows ‘random’ searches

Allows rapid re-arrangements of MTs

Makes ‘selective stabilization’ (at tip) possible

Can be locally regulated, to drive MTs into or out of an areca

Microtubule dynamics allow the cell to quickly reorganize the
network when building a mitotic spindle

Dynamics also allow microtubules to probe the cytoplasm for
specific objects and sites on the plasma membrane - search and

capture

capping
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Actin based cell movement

* Wound healing — epidermal cells.

* Immune response — leukocytes — migrate to
sites of infection.

* Development — neural crest cells; neuronal
process extension.

 Cancer cell metastasis — malignancy determinant.

.

< e
§\\\\ =

\_:

contractile bundle gel-like network tight parallel

| | bundle
100 nm




G-actin-ATP During growth, the energy supplied by
lpolymerization ATP/GTP hydrolysis is stored in the

F-actin-ATP lattice as mechanical strain.
\-. P ° ° (4
- This strain powers the fast shortening
F-actin-4DP . . .
o of disassembling microtubules.
depolymernzation 0 VGBS
ol . . INA o] SN
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lADPfATP exchange
G-actin-ATP
© Actin +ATP
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Dynamic instability and treadmilling are phenomena that
require energy dissipation, and which could not emerge from
a pure self-assembly process.



Regulation of polimerization rate
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Distinct actin filament organizations
and their mechanical description.

A Branched actin network

+ Capping Proteins (+CP)
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Extracellular stimuli ? >
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Dynamics of actin polymerization at the
leading edge
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Microscopic disassembly
of actin filaments

ADF/cofilin-mediated fragmentation

Maximal
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at boundaries
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Polymerization based movement
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Arp 2/3 binds to the sides
of filaments
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The thermal energy bends the nascent short
filaments, storing elastic energy. Unbending
of the end against the leading edge will
provide the driving force for protrusion.

Science. 2003 Dec 5;302(5651):1704-9.



Polymerization motors — ratchet mechanism
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Fioad k.M — polymer growth
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The motor does not directly drive the load, but
simply rectifies its Brownian diffusion.
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Then, characteristic stall force (V=0) is:




The directional movement

The perinuclear mitochondria generate an anterior—posterior
PpH gradient which regulates gelation and solation of the gel
in the lamellipod.

* Low pH.

» The interfilament
interactions weaken.

» The filaments
unbundile.

* Because the cell front
adheres to the
substratum, this
provides the contractile
force to pull the cell
body forward.

* High pH.

» Filaments grow and
bundle into thick fibers.

Solation-

Organelles contraction Bundled

» The cell front is pushed
out.

* Elastic energy is stored.

v=0.1-1 um/s




Cortex

Stress fibers
antiparallel contractile structures

Lamellipodium Filopodium
branched and crosslinked parallel bundles

contractile elements

visco-elastic elements et i =
rigid rods

Overlay of actin architecture and
mechanics in the moving cell.

A: schematic representation of the cell
with the different architectures.

B: overlay of the actin architecture and
its mechanical profile.

The red rectangles are the shock

absorbers (dashpots) that represent the actin
network, while the green circles are active springs
due to myosin motor activity.



Listeria utilizes the power of actin polymerization for
intracellular movement

Listeria
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Figure 17-17¢
Molecular Cell Biology, Sixth Edition
© 2008 W.H. Freeman and Company
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Actin-driven motility of lipid vesicles
coated with ActA.

Fluorescently labeled ActA molecules (blue)

i cell wall
A moving vesicle
e deformed by
C .
% actin.

SRS

actin ARP
complex



In M. xanthus nozzles are
clustered at the two cell
poles, pili at one pole.

S motility 1s generated by the pili, which extend, attach to nearby
cells, and then retract, pulling the cells together.

A motility 1s driven by the
secretion of mucilage from
the nozzles — gliding.

The slime
secretion

Pore complex in
P uncinatum




A Model for Nozzle Function

+ Slime is imported into the proximal end of the nozzle.
+ Slime is a creosslinked polyelectrolyte gel (crosslinked fibers).

+ A Donnan potential is generated by the mobile counterions.

+ The slime is hydrated by water that flows into the nozzle
causing the slime to swell.

External solution The nozzle hydrates

ETTE'N ™ only through the nozzle
exit — a hydration

gradient exists along

the nozzle.

Gel fiber




Force generation in polyelectrolyte gels

Solvent

Negatively charged filaments are
surrounded by positive counterions that are
confined inside gel by the Donnen potential.

Donnen

A :
¥ potential

Counterion
gas

The swelling pressure

I1 =11 + 11, +11 + 11

Ilon Elastic Interactions

Entropic

I,

ntropic
II,  — a polyelectrolyte gel contains diffusible counterions.

Water will diffuse 1n.

I, ... — Gel elasticity tends to resist its tendency to expand

outwards.
11,

nteraction

— the gel fibers tend to diffuse outward.

— An attraction between the gel fibers.



I1 +11 <<II, +1I1

Entropic Interactions lon Elastic

11

swell

- Hosm o

elas

At equilibrium, the elastic tension just Osmot
counterbalances the osmotic pressure of the gel
counterions.

11 Elastic pressure 33

If the cross-links are partially removed — the gel partially ‘solates’ —
the elasticity of the gel weakens, allowing the osmotic pressure to
expand the gel to a larger volume.

The force of expansion is in the
range of hundreds of pN per square
micron, and the expansion would
take a few tenths of a second for a
micron sized ball.




