Biological space



Cosmic scale F = 3
i Y
Macroscale F =ma
Bio-nano-scale 5@ = 9950) + f(©)
dr Jt

Quantum Mechanics in Y. W=

or

Time-dependent Schrodinger equation (general)



] m @f@ + Diffusion

+ Thermal fluctuations

+ Low Reynold’s number

The radius of a water

molecule is about 0.1 nm. \
Fluid can be considered

: .. as a continuum
Protein radius is in the /
range 2 - 10 nm.




Transport Phenomena

A system 1s not in equilibrium when the macroscopic parameters (7, P,
etc.) are not constant throughout the system.

To approach equilibrium, these non-uniformities have to be dissipated
through the transport of energy, momentum, and mass.

The mechanism of transport 1s molecular movement.

~ Molecular speed A
fﬁ:

2
) For T=300K
500 Da (ATP) —v =70 m/s

50 000 Da (protein) —v =7 m/s
6.25 GDa (200 nm diameter vesicle) —v = 600 um/s
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Actual velocity = Maxwell s distribution
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dS=0 defines thermal, mechanical and chemical equilibria

M
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The tendency to maximize multiplicity predicts that when
there 1s inequity 1n a given quantity (e.g. concentration of
particles), there will be a net movement of this quantity from
areas of higher concentration to areas of lower concentration
until equilibrium 1s reached = diffusion

J

w'T is a measure of system’s tendency for particle
exchange



Diffusion — the flow of randomly moving particles caused by
variations of the concentration of particles.

7 d ( potential) Force

dx

The random walk of a large number of particles results
with deterministic flow of particles.

Gaussian distribution

n(x,t)=

LZ
\ Dt 4 Dt

<x2 >At = DAt

0 10 20 30 40 0 60 70 30 €0

a 1D random walk of a drunk

the rms displacement



Macroscopic theory of diffusion:

Assumptions:
1. conservation of mater

2. the relation between gradient and flux is linear

J.in J,. out
— S
> X
dx
oC
Fick’s 15t law: Jx =-D— oC 32C
0x > a— = 82
5 X
From the aC __ aJ
conservation of mater: ¢ ox Fick’s 2" law:

Adolf Eugen Fick
(1829-1901)

In thermodynamic terms, we're watching the increase in
entropy within a small, isolated system without an input of
energy.



Diffusion coefficient

Diffusion coefficient depends on the velocity of diffusing
particles and hence on size of the particles, temperature,
and on the viscosity of the media

H_RT, 1

m»\ N A F friction
&v F friction 677777' its units m?s-!

RT k BT Stokes-Einstein
= relation

} 6nrN | - 6tnr



Diffusion coefficient

Calculate diffusion coefficient for a typical globular protein
(100 kDa; r ~ 2nm) in aqueous media

kT

D =
6Tnr

Stokes-Einstein relation

kp=138 * 105 JK' 1J=1kg*m’’s? = 10° g*m?"s~?
Mo = 1P =1 g¥m s
T= 300K

r=2nm=2%10°m
N o
S

D=10"" m*s™







In three dimensions:

dc(x,y,2)

dt

The rms displacement of

particles:
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Diffusion across exchange epithelium

“random walk”
BLOOD 10 um vascular
7 endothelium

Einstein eqgn: < X 7 >= 2D [

<x’> - mean square distance (cm?)
D — diffusion coefficient (cm?/s)
t — time 1nterval (s)



Lateral Diffusion

N

Diffusion in lipid
microdomains

Diffusion in submembrane
cytoskeletal corrals

Diffusion in membrane
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Saffman — Delbriick equation

Free membrane
diffusion

o

Diffusion in crowded
membrane domains

pits and cavities



3D vs. Lateral Diffusion
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D ~ 10~ for most small molecules in water

. Ave. Diffusion ..

Distance Time Significance

100 angstroms 0.0000001 sec | Cell membrane thickness

| micron 0.001 sec S.1ze of mo§t bacteria or
mitochondna

10 microns 0.1 sec Diameter of small eukaryotic
cells

100 microns 10 sec Diameter of large eukaryotic
cells

250 microns 1 tin Radms of glant squid axon
Thickness of frog sartorus

2 millimeters 1hr puscle,
half thickness of lens of eye

5 millimeters 7 hr Radms of mature ovanan follicle

: Thickness of ventricular

2 centineters 5 days .
myocardium

10 centimeters 120 days Dlametfzr of sea urchins & other
small antmals

1 meter 32 yrs Half height of human



Diffusive transport in biology |J =-D—

dC
dx

+ A concentration penalty — diffusive transport requires a

concentration gradient.

+ No directional specificity

+ The time penalty — diffusive transport time scales as the square of

the distance or <X2> = 4Dt

There is a time when its

surface area is insufficient

to meet the demands of cells.

Diffusion

Mouth

Diffusion

External environment
CO.
2 0,

Digestive
system 4

system

Unabsorbed Metabolic waste
matter (feces) products (urine)




Characteristics of Fluids

(1) Fluids have density (p), and thus moving
fluids have momentum (requires a force to
start or stop them).

(2) Fluids have viscosity

(1) Viscosity changes with temperature and salinity

(2) When fluids contact a solid, there is a thin layer
that sticks very tightly to the solid surface. = “No-
slip condition™



Momentum Transfer, Viscosity

Drag — transfer of the momentum 1n —
the direction perpendicular to velocity. Az U
Ap, S F 4 (ux,wp _ ux,bottom) Laminar flow between two surfaces
At * A7z moving with respect to each other.
i =17 d Uy F, — the viscous drag force, 7] - the coefficient of viscosity
A Az F /A — shear stress

Shear viscosity 1) 1s the proportionality between the velocity
gradient and the force required, per area, to keep the plates moving

at constant velocity.
n(kg/mesec at 20° C)

Water 1073
Olive oil 0.084
Glycerine 1.34

Glucose 1013



The Langevin approach — dissipative force

Averageing over a large number of particles

Forces acting on a particle due to the solvent:
(i) Stochastic thermal (Langevin) force:
+ changes direction and magnitude

+ averages to zero over time

(&(1)=0

(ii) a viscous drag force that always slows the motions.

_ friction (damping) coeff.
=6 TR Stokes law
The thermal forces

f =~4.5nN ~ viscosity
_14
The gravitational force F g = 107" nN << f



Newton’ s law for the protein motion in a one-dimensional
domain of length L, x(t):

dx dv

dt di

—Sv+ f,(t) O=x(t)<L

=v,

2 2
md (x)—mv2
2 dt’

_fd(x)
dt

) +xf 5 ()

The average over a large number of proteins

m d2<x2>

2 dt’

{mv?)

gdx

2 dt

+ <xfB (t)>

The mass, m, of a typical protein is about 102! kg



The random impulses from
the water molecules are
uncorrelated with position.

<x(t)°f3(t)> =0 Toea.

F

Integrating twice between t = (0, t) with x(0) = 0:

d<x2> 2k, T
dt

2kT[

(1-e™), <x2> t—1(1- e‘t/r)i

where T = m/C.



Robert Brown and Brownian motion

Brown (1827): observed irregular
movement of pollens in water under
miCroscope.

Major contribution of Brown: made sure
non-organic particles also have Brownian
motion, confirmed that Brownian motion
1s not a manifestation of life.




)2 -

For short times, t <<, the
exponential can be expand to
k, T

second order: < x2 > = {
m

2

(t <<7T)

B The protein behaves as a ballistic particle moving with a
velocity v = (kyT/m)"?. For a protein with m = 102! kg, v =2 m/s.

B In a fluid the protein moves at this velocity only for a time t ~
m/C = 10 -° sec — shorter than any motion of interest in a

molecular motor.

B During this time the protein travels a distance v - T ~ 0.01 nm
before it collides with another molecule.




)< 2 -,

When t >> 1, the exponential term disappears and:

¥ = 2"55 (t > 1)

Because <x?> = 2Dt (Einstein relation — 1905):

D= kyT Friction is quantitatively
& related to diffusion

For protein typically D ~ 10-1! m?/sec.



Einstein, Brownian motion, and
atomic hypothesis

Albert Einstein published 4 papers
in the Annalen der Physik in

1905.
— Photoelectric effect

EE— — Brownian motion
Albert Einstein, 1905 . ..
— Special theory of relativity

e Drag force: f=yv
« Diffusion due to random walk: d*= 6Dt
e To reach equilibrium: Dy = kT

 Random collisions (random walk) are related to the
dissipation of kinetic energy to solvent molecules.



External forces acting on macromolecules

dx
é‘E = F(x,t)+ f5(2)

The 1nertial term 1s
neglected.

Forces acting on proteins can be characterized by a potential

F(x,t)=- é‘qp;;c, )

X

& _
dt ot

C

_09LeD)

Langevin equation



The Reynolds Number

Dimensionless constant

. . a —radius of a particle
inertial term vap,
= = v — particle velocity

R =
friction term n

P,, — medium density

When the Reynolds
number R’ is small the
viscous forces dominate.

Mass Diffusion Swimming Reynolds

[e] time speed [cm/ number
s/
Bacterium lum 1072 1 msec 1073 107

Whale 10m  10° 10 years 1000 103



Low Reynolds Number = Laminar EFlow

&y




Advertisement of
a new swim suit

FAST.SKIN: VON DER NATUR ENTWORFEN, VON SPEEDO PERFEKTIONIERT!

SPEEDO7 |fast-s

Mounting a

riblet foil on the

wing of an
airbus



Small objects experience a large air viscosity.

If the animal tries to
move by a reciprocal
motion in low R number
condition, it can’t go
anywhere.

There is a minimum size for insects that are able to fly.

The smallest flying insect is a parasitic wasp
(Dicopomorpha Echmepterygis), which is about 1/10
of a mm long.



Recovery stroke

Direction of locomotion ==

Power stroke

In addition the viscous friction coefficient
can be anizotropic. Wy <1,



Corkscrew

»

A ,,corkscrew
(flagella)

It 1s a r1gid, helical object.

All the components in the xy plane are canceled
but df, does not concel.



At low Reynolds number you can't shake
off your environment.

Stirring vs. diffusion

. 2
Time for transport by _ L Time for tranport by 4 _ l_
stirring: stirring ~— v Cl’l'fﬁ/lSl.OYZ.' diffusion D

Stirring works if
t Iffusion lV
q =20 75
tstirring D
For a bacteria Stirring number Reynolds number
[v [v
Sz103 S=B D =107 cm?/s R=; n =107 cm?/s

It can't do anything by stirring its local surroundings. It might as
well wait for things to diffuse.



