
Biological space 



Macroscale 

Cosmic scale 

Bio-nano-scale 

Quantum Mechanics 

Time-dependent Schrödinger equation (general)
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  Diffusion 

  Thermal fluctuations 

  Low Reynold’s number 

The radius of a water 
molecule is about 0.1 nm. 

Protein radius is in the 
range 2 - 10 nm. 

Fluid can be considered 
as a continuum 



A system is not in equilibrium when the macroscopic parameters (T, P, 
etc.) are not constant throughout the system. 

 
To approach equilibrium, these non-uniformities have to be dissipated 

through the transport of energy, momentum, and mass.  
 

The mechanism of transport is molecular movement.  

Transport Phenomena 
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For T = 300 K 
500 Da (ATP) – v = 70 m/s 

50 000 Da (protein) – v = 7 m/s 

6.25 GDa (200 nm diameter vesicle) – v = 600 µm/s 

Molecular speed 



Actual velocity ⇒ Maxwell’s distribution 
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µ/T is a measure of system’s tendency for particle 
exchange  

The tendency to maximize multiplicity predicts that when 
there is inequity in a given quantity (e.g. concentration of 

particles), there will be a net movement of this quantity from 
areas of higher concentration to areas of lower concentration 

until equilibrium is reached = diffusion 
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Diffusion – the flow of randomly moving particles caused by 
variations of the concentration of particles.  

Force
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The random walk of a large number of particles results 
with deterministic flow of particles. 
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Macroscopic theory of diffusion: 

x 

Assumptions:	
1.  conservation	of	mater		
2.  the	relation	between	gradient	and	7lux	is	linear	

0 
dx 

Adolf Eugen Fick 
(1829-1901) 
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conservation of mater: Fick’s 2nd law: 

In thermodynamic terms, we're watching the increase in 
entropy within a small, isolated system without an input of 

energy.  



Diffusion coefficient 
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Diffusion coefficient depends on the velocity of diffusing 
particles and hence on size of the particles, temperature, 
and on the viscosity of the media  

Stokes-Einstein 
relation 

its units  m2 s-1 
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Calculate diffusion coefficient for a typical globular protein 
(100 kDa; r ~ 2nm) in aqueous media 

Stokes-Einstein relation 

kB = 1.38 * 10-23 JK-1 1 J = 1kg*m2*s-2 = 103 g*m2*s-2 

ηH2O = 1cP = 1 g*m-1*s-1 

T≈ 300K 

r ≈ 2 nm = 2*109 m 

121010 −−≈ smD

Diffusion coefficient 
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The rms displacement of 
particles: 

Dtx ≈2

dc(x, y, z)
dt x,y,z
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Diffusion across exchange epithelium 

basilar membrane

10 mµ vascular
endothelium

BLOOD

INTERSTITIUM

Dtx 22 >=<Einstein eqn: 

<x2> - mean square distance (cm2) 
D – diffusion coefficient (cm2/s) 
t – time interval (s) 

“random walk” 



Lateral Diffusion 
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3D vs. Lateral Diffusion 
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D ∼ 10 -5 for most small molecules in water 



Diffusive transport in biology 
dx
dCDJx −=

   A concentration penalty – diffusive transport requires a 
concentration gradient. 

  The time penalty – diffusive transport time scales as the square of 
the distance or <X2> = 4Dt 

  No directional specificity 

There is a time when its 
surface area is insufficient 

to meet the demands of cells. 



(1)  Fluids have density (ρ), and thus moving 
fluids have momentum (requires a force to 
start or stop them). 

(2)  Fluids have viscosity 
(1)  Viscosity changes with temperature and salinity 
(2)  When fluids contact a solid, there is a thin layer 

that sticks very tightly to the solid surface. = “No-
slip condition” 

Characteristics of Fluids 



Momentum Transfer, Viscosity 

ux Δz 
Drag – transfer  of  the  momentum  in  
the direction perpendicular to velocity. 

Laminar flow  between two surfaces 
moving with respect to each other. 

( )
z

bottom,top,

Δ

−⋅
∝≡

Δ

Δ xx
x

x uuA
F

t
p

z
ud

A
F xx

Δ
=η Fx – the viscous drag force, η - the coefficient of viscosity 

Fx/A – shear stress 

Shear viscosity η is the proportionality between the velocity 
gradient and the force required, per area, to keep the plates moving 
at constant velocity. 

  η(kg/m•sec at 20o C) 
Water    10-3 

Olive oil   0.084 
Glycerine   1.34 
Glucose   1013 



Forces acting on a particle due to the solvent: 
(i) Stochastic thermal (Langevin) force: 

Averageing over a large number of particles 

The Langevin approach – dissipative force 

  changes direction and magnitude 

  averages to zero over time 

0)( =tξ
(ii) a viscous drag force that always slows the motions.  

vf ζ−= friction (damping) coeff. 

viscosity 

Stokes law Rπηζ 6=
The thermal forces 

nNf 5.4≈
The gravitational force fnNFg <<≈ −1410



Newton’s law for the protein motion in a one-dimensional 
domain of length L, x(t): 
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The average over a large number of proteins 
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The mass, m, of a typical protein is about 10-21 kg 



Integrating twice between t = (0, t) with x(0) = 0: 
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where τ = m/ζ. 

The random impulses from 
the water molecules are 

uncorrelated with position. 
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Robert Brown and Brownian motion 
Brown (1827): observed irregular 
movement of pollens in water under 
microscope. 
 
Major contribution of Brown: made sure 
non-organic particles also have Brownian 
motion, confirmed that Brownian motion 
is not a manifestation of life. 

Robert Brown 



   The protein behaves as a ballistic particle moving with a 
velocity v = (kBT/m)1/2. For a protein with m = 10-21 kg, v = 2 m/s. 

  In a fluid the protein moves at this velocity only for a time τ ~ 
m/ζ = 10 -13 sec – shorter than any motion of interest in a 
molecular motor. 

  During this time the protein travels a distance v · τ ~ 0.01 nm 
before it collides with another molecule. 

For short times, t << τ, the 
exponential can be expand to 
second order: )(22 τ<<= tt

m
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When t >> τ, the exponential term disappears and: 

For protein typically D ~ 10-11 m2/sec. 

Because <x2> = 2Dt (Einstein relation – 1905): 

ζ
TkD B= Friction is quantitatively 

related to diffusion 
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Einstein, Brownian motion, and 
atomic hypothesis 

 Albert Einstein published 4 papers 
in the Annalen der Physik in 
1905.  
– Photoelectric effect 
– Brownian motion 
– Special theory of relativity Albert Einstein, 1905 

•  Drag force: f = γv 
•  Diffusion due to random walk: d2 = 6Dt 
•  To reach equilibrium: Dγ = kT  
•  Random collisions (random walk) are related to the 

dissipation of kinetic energy to solvent molecules. 



External forces acting on macromolecules 
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The inertial term is 
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Forces acting on proteins can be characterized by a potential 
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Dimensionless constant 
The Reynolds Number 

η
ρmva

termfriction
terminertialR ==

a – radius of a particle 

v – particle velocity 

ρm – medium density 

When the Reynolds 
number ‘R’ is small the 
viscous forces dominate. 

108 1000 103 years 109 10 m Whale 

10-5 10-3 1 msec 10-12 1 µm Bacterium 

Reynolds 
number 

Swimming 
speed [cm/

s] 

Diffusion 
time 

Mass 
[g] 



Shark skin delays transition to turbulence 

Low Reynolds Number = Laminar Flow 



Advertisement of 
a new swim suit 

Mounting a 
riblet foil on the 

wing of an 
airbus 



If the animal tries to 
move by a reciprocal 

motion in low R number 
condition, it can’t go 

anywhere. 

Small objects experience a large air viscosity. 

There is a minimum size for insects that are able to fly. 

The smallest flying insect is a parasitic wasp 
(Dicopomorpha Echmepterygis), which is about 1/10 

of a mm long.  



In addition the viscous friction coefficient 
can be anizotropic. ⊥<ηηII



E. coli 

A „corkscrew”  
(flagella) 

It is a rigid, helical object. 

All the components in the xy plane are canceled 
but dfz does not concel. 



At low Reynolds number you can't shake 
off  your environment. 
Stirring vs. diffusion 

Time for transport by 
stirring: v

ltstirring =
Time for tranport by 
diffusion: D

ltdiffusion
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For a bacteria 

D = 10-5 cm2/s 

Stirring number 

D
lvS = η = 10-2 cm2/s 

η
lvR =

Reynolds number 

S ≈ 10-3 

It can't do anything by stirring its local surroundings. It might as 
well wait for things to diffuse. 


