

Transmembrane diffusion: passive & down a concentration gradient

Rate factors: membrane, temperature, distance, & size

Membrane permeability to nonelectrolytes

Membrane passive transport mechanisms.

(A)Solubility-diffusion model.

- (B)Transient pore model.
- (C)Head-group gated model.
- (D)Lipid flipping-carrier model.

Circles represent lipid head groups and the gray area indicates the hydrophobic region occupied by lipid acyl chains. The black oval is the solute molecule.

Fick's law for passive transport of neutral particles through the membrane:

The membrane:water partition coefficient (K_p)

The chemical potential in the water phase (μ_w) = the chemical potential in the membrane (μ_m) : $\mu_w = \mu_w^o + RT \ln C_w = \mu_m = \mu_m^o + RT \ln C_m$

The concentration at the surface of the membrane (C_m)

$$C_m = C_w \exp\left(\frac{\mu_w^o - \mu_m^o}{RT}\right)$$

$$K = \frac{C_m}{C_w} = \exp\left(\frac{\mu_w^o - \mu_m^o}{RT}\right)$$

 C_m – concentration just inside the hydrophobic core of the bilayer, C_w – concentration in the aqueous solution.

$$K = \frac{C_{m1}}{C_{out}} = \frac{C_{m2}}{C_{in}}$$

Fick's law for passive transport of neutral particles through the membrane:

Flux, and therefore the rate of transfer across the membrane are proportional to the partitioning coefficient.

Partitioning coefficient is a quantitative measure of the how lipophilic is the compound.

Higher partitioning coefficient indicates better solubility and faster transport across the membrane

$$J_x = -D\frac{\partial C}{\partial x}$$

$$J = -\frac{D}{d} \exp\left(\frac{\mu_w^o - \mu_m^o}{RT}\right) (C_i - C_o)$$

$$P = \left(\frac{D}{d}\right) \exp\left(\frac{\mu_w^o - \mu_m^o}{RT}\right)$$

The permeability coefficient

Permeability coefficients are a combined property of the solute *and* the membrane system.

$$P = \frac{DK_P}{d}$$

P in membranes is strongly correlated with K for nonpolar solvent

$$J = -\frac{D}{d} K (C_i - C_o)$$

water

Properties	Water	Urea	Thiourea
Molecular weight	18	60	76
Molecular radius (Å) ^{a,b,c}	1.5–1.9	2.4–2.7	2.2–2.6
Number of H bonds ^{d,c}	4	5	5
Permeability coefficient (×10 ⁻⁵ cm/s) ^d	915	23.9	0.07
Ea for permeability (kcal/mol) ^{e,c}	6	11	14
Reflection coefficient (σ) ^{f,g,c}	0.002	0.55–0.79	0.85
Partition coefficient $(k_{ m ether})^{ m d}$	0.003	0.00047	0.0063
Half time for exchange ^{h,i,j,b}	4.2 ms	0.03–0.3 s	2–3 min

Physicochemical and RBC distributional properties for water, urea and thiourea

Unstirred Layers

Molecule diffusion across the aqueous layers adjacent to either surface of the membrane.

1 μ m to 500 μ m thickness.

↓ It is most prominent for relatively nonpolar compounds – the diffusion across the membrane itself will be relatively fast.

♣ For water soluble compounds – diffusion across the unstirred layers will have relatively less effect.

♣ P – a membrane permeability coefficient

4 D – an aqueous diffusion constant.

 $\mathbf{4}$ d_i and d_o – the thicknesses of unstirred layers.

 \mathbf{L}_{i} and C_{o} – the bulk concentrations of the compound,

 $\mathbf{4} C_{mi}$ and C_{mo} – the concentrations at the surface of the membrane.

• The flow through the membrane is

$$J_m = P(C_{mi} - C_{mo})$$

• The flow through the unstirred layers

$$J_o = \frac{D}{d_o} \left(C_{mo} - C_o \right) \qquad J_i = \frac{D}{d_i} \left(C_i - C_{mi} \right)$$

The effect of unstirred layers is to decrease the permeability so the apparent permeability coefficient (P_{app}) is smaller than P:

$$\frac{1}{P_{app}} = \frac{1}{P} + \frac{d_i}{D} + \frac{d_o}{D}$$